Programa de las Naciones Unidas para el Desarrollo

INFORME DE PROYECTO

Proyecto: "Descontaminación de residuales de destilería mediante propagación de proteína microbiana (DRD/PPM)"

Fecha: 13 de enero de 2015

Al servicio
de las personas
y las naciones
Cuba

INFORMEDEPROYECTO (ITP)

1. Informacion basica del proyedto

Número y título del proyecto:
Numero . Descontaminación de residuales de destilería mediante propagación de proteína microbiana (DRD/PPM)
Asociado en la implementación / Entidad Nacional de Ejecución:
Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar (ICIDCA)

Otras parte s responsables: (si las hubiera)

Fecha de inicio:
Prevista originalmente: enero 2014
Real: agosto 2014

Fecha de término:
Prevista originalmente: diciembre 2015
Estimada: diciembre 2015

Período del informe: agosto -dic. 2014

2. 2rogreso en la implementedon del proyedro

Estado de los Riesgos en la actividad:

Describir los principales riesgos identificados y las acciones tomadas para controlar/minimizar el riesgo.

Definición del riesgo	Acción	Responsable
En relación con la gestión comercial pueden presentarse: - Afectaciones en la compra de equipos dado el nivel de especialización que requieren.	- Búsqueda de alternativas de proveedores en el exterior y en algunos casos sustitución por artículos nacionales. - Planificar para inicios del	ICIDCA

- Aumento de los precios de los equipos en el mercado.	proyecto los insumos de mayor complejidad e iniciar la licitación en el 2014. Establecer un orden de prioridad de adquisición de equipamiento.	
Disponibilidad de transporte para viajes al interior del país donde se encuentren las fábricas de levadura Torula para la realización de las tareas.	Seguimiento de los aportes locales constituidos por el ICIDCA, Grupo Empresarial AZCUBA e industrias involucradas para los apoyos en transportación, hospedaje y atención a los especialistas involucrados en las tareas.	ICIDCA
Cambios de personal técnico que puedan duplicar esfuerzos de capacitación.	- Sistema de seguimiento con las instituciones y empresas comprometidas en cuanto a la asignación de recursos humanos a capacitarse. - Propiciar encuentros a través de sesiones de trabajo, intercambios y talleres entre los técnicos capacitados de las industrias beneficiadas.	ICIDCA
Afectación en la extensión de los resultados del proyecto y la aplicación de las soluciones tecnológicas propuestas.	Interactuar en el marco del proyecto con las autoridades del G. E. AZCUBA para la elaboración e inclusión en los planes de inversión e investigación y extensión de los resultados del proyecto.	ICIDCA
Afectación en la ejecución de tareas planificadas con los recursos de las entidades participantes	Reprogramar tareas en base a otros recursos disponibles entre las entidades participantes. Cooperación entre las partes involucradas en la movilización de recursos propios.	ICIDCA, CeBiot y UFMG
Afectación en la ejecución de tareas planificadas con los recursos del PNUD por atrasos en liberación de fondos.	Reprogramar tareas en base a otros recursos disponibles entre las entidades participantes.	ICIDCA, CeBiot y UFMG

Problemas de implementación:
Describir los principales obstáculos experimentados durante la implementación. Incluir las estrategias o acciones ya ejecutadas para enfrentar estas dificultades.

3. Besempenio del proyecto-crado de avance hacea ellosio de los resultados

Resultados esperados en el marco de resultados estratégicos PNUD (2014-2017):

- Fortalecimiento de las capacidades nacionales y regionales para brindar servicios sostenibles para la generación de energías alternativas y el desarrollo de medidas para mitigación y adaptación al cambio climático.
- Valorización de residuales industriales en beneficio de la obtención de fuentes de proteínas para alimentación animal.

Línea de servicio del MYFF que se aplica:

Indicadores de resultados:

1. Especialistas capacitados de los países involucrados (personal científico- técnico): 34 .
2. Cepas de levadura Candida utilis evaluadas que pueden crecer en medio de vinaza de destilería: 5
3. Numero de dietas diseñadas que incluyan levadura de vinaza para alimento animal: 4
4. Publicación en revista científica especializada (Waste and Biomass Valorization/©Springer): 1
5. Material de consulta sobre la actualizacion del estado del arte de la produccion de levadura forrajera en residuales liquidos de destilerias: 1

Meta anual (año):

1. Arrancada del Proyecto
2. Inicio de trabajos asociados con el crecimiento de levadura Candida utilis en vinazas de destilerías

Cumplimiento de meta:

Esto fue cumplimentado al 100\%
Grado de avance en la contribución al resultado corporativo:
X Cambio Positivo
\square Cambio Negativo
\square Sin cambios

Resultado (Producto) Previsto en el Proyecto	Resultado 01.Dirección del Proyecto Act. 01. Reunión de apertura del Proyecto. El Programa de Trabajo del Proyecto fue enviado por el Director del Proyecto a todos los participantes involucrados. Dicho Programa fue discutido en cuanto a las estrategias de implementación y salidas vía correo electrónico. Act. 2. Curso de postgrado sobre Ingeniería de reacciones de fermentación UAM (México). Por atrasos en la liberación de fondos, esta actividad fue reprogramada para el año 2015.

| Resultado (Producto)
 Previsto en el
 Proyecto | Resultado 02. Actualización bibliográfica (análisis del estado del arte
 internacional) |
| :--- | :--- | :--- |
| Act. 1. Búsqueda de información a través de sitios web y revistas científicas | |
| | Se recopilo y actualizo la documentación existente y los avances en la
 obtención de proteína unicelular a partir de medios formulados con vinazas
 de destilería, particularizando en el cultivo de levaduras, en especial de
 Candida utilis. Se hizo referencia a los requerimientos nutricionales de estos
 organismos en cuanto macroelementos como Carbono, Nitrógeno, Oxigeno,
 Fosforo, Azufre y microelementos, así como de especificidades fisiológicas
 referentes a parámetros óptimos de crecimiento (temperatura, pH,
 aireación, etc.). La bibliografía reseña a modo comparativo los antecedentes
 existentes en Cuba con el proceso tecnológico diseñado a partir de mieles
 finales y las diferencias con la tecnología tradicional para vinazas de
 destilerías.
 La revisión también incluyo los antecedentes y experiencias actuales de de
 aplicación y tratamiento biológico de las vinazas de destilerías en Cuba y
 otros países. Se recogen las diferencias en cuanto a importantes parámetros
 fisico-químicos que determinan su potencial como sustrato donor de
 Carbono y energía para el crecimiento de microorganismos a gran escala. |
| Recomendaciones y acciones propuestas por el Oficial de Programa - PNUD: | |

Resultado Previsto en el Proyecto	Resultado 03. Desarrollo del procedimiento Act. 01. Crecimiento microbiano a escala de laboratorio. Cinética de
	crecimiento en diferentes componentes de las vinazas (etanol, glicerol, etc.)
De acuerdo a estudios de caracterización de vinazas cubanas con respecto a los compuestos carbonados presentes, pudo detectarse que en su composición aún se manifiestan cantidades importantes de compuestos orgánicos como alcoholes, azucares y ácidos orgánicos. Su concentración presenta una alta variabilidad y depende de factores tales como la materia prima y las eficiencias de fermentación y destilación.	

A partir de estas caracterización de vinazas cubanas obtenidas a partir de fermentaciones alcohólicas con mieles finales y jugos de filtro, pudo detectarse dentro de estos compuestos carbonados no azucares, el glicerol como el más significativo, identificándose como potencial fuente aportadora de Carbono y energía para el crecimiento de Candida utilis en medios suplementados con varias fuentes nitrogenadas.

Una parte de este estudio abordó la cinética de crecimiento de la cepa Candida utilis NRRL Y-660 en glicerol y etanol como únicas fuentes de carbono y energía, por ser los dos componentes mayoritarios a utilizar por esta especie creciendo en residuales de la destilería. Esta especie fue seleccionada por estar catalogada como microorganismo General Recognized as Save (GRAS), su versátil perfil metabólico y conocido valor proteico constitutivo. La cepa NRRL Y-660 fue seleccionada entre otras cepas de esta especie de acuerdo a parámetros cinéticos de crecimiento en este sustrato.

En bioreactor de 2,5 L trabajando en sistema discontinuo, se obtuvieron valores de velocidades específicas máximas de crecimiento ($\mu \mathrm{máx}$) de 0,338 y $0,330 \mathrm{~h}^{-1}$ para etanol y glicerol respectivamente. A su vez los cálculos de rendimiento biomasasustrato (Yb / s) mostraron valores significativamente similares para ambos alcoholes $(0,641$ y 0,627$)$. Estos resultados fueron comparables a los obtenidos a un patrón con glucosa para ambos indicadores.

Los resultados obtenidos fueron también contrastados estadísticamente con los parámetros cinéticos obtenidos con medio no sintético compuesto por vinaza:miel 85:15 no obteniéndose diferencias significativas para μ máx ($0,338 \mathrm{~h}^{-1}$), pero si para los rendimientos biomásicos cuyos valores estuvieron muy por encima de los obtenidos al formular el medio de crecimiento con fuentes complejas y heterogéneas (vinazas y melazas). Estos resultados permitieron explicar el comportamiento no diauxico en medios con vinazas, a pesar de ser un sustrato complejo.

Paralelamente esta tarea abordó el posible efecto inhibitorio de algunos ácidos carboxílicos volátiles como acético, propiónico y butírico presentes en los residuales de destilerías. Estos compuestos pueden provenir de las mieles y del propio metabolismo de los microorganismos involucrados en la fermentación alcohólica. Fue detectado que el poder inhibitorio sobre la cepa Candida utilis NRRL Y-660 se incrementa en la relación acético, propiónico y butírico y los niveles encontrados de los mismos tanto en mieles como en vinazas, no afectan significativamente la $\mu m a ́ x ~ d e$ este microorganismo, por lo que puede inferirse que la contribución de estos en la carga orgánica de este residual, aunque minoritaria, forma parte de la fracción que puede ser biodegradada mediante el crecimiento aerobio de esta especie de levadura.

Act. 2. Estudios en la composición de la biomasa

La biomasa obtenida fue caracterizada en cuanto al contenido de cenizas,

	carbohidratos totales, lípidos, entre otros indicadores de calidad; resaltando como sus propiedades más atractivas su contenido proteico y concentración de $\mathrm{P}_{2} \mathrm{O}_{5}$ con valores promedio de $45 \% \mathrm{p} / \mathrm{p}$ y $3 \% \mathrm{p} / \mathrm{p}$ respectivamente. Considerando el valor proteico del producto fueron diseñadas 4 dietas para diversas especies animales que incluyan esta levadura como aditivo proteico: núcleo activador ruminal, sustituto lácteo para cría artificial de terneros, pienso de alimentación porcino y pienso de alimentación avícola.
Recomendaciones y acciones propuestas por el Oficial de Programa - PNUD:	

* De ser necesario incorporar nuevas tablas según el número de resultados previstos en el proyecto

4. Thomaden itranctera prelminar

(Esta información se considera preliminar hasta la emisión de los CDR, que ofrecerán la información financiera oficial del cierre del año)

Fuente de Fondos	FFPG
Presupuesto Total	32000.00 USD
Presupuesto (año)	13700.00 USD
Ejecución (año)	6883.39 USD (50\%)

5. Gportumidades para difindif infomacion

(Las oportunidades para difundir información se refieren a: materiales divulgativos en genera, como (libros, articulos, plegables, afiches, almanaques, articulos de prensa, publicaciones, documentos de sistematización de experiencias, sitios web, programas de radio/TV, exposiciones, etc.

Describir brevemente las acciones para la difusión de información realizadas durante el año:

Actividades de divulgación de resultados:

Publicación de resultados concernientes a caracterización de vinazas cubanas obtenidas a partir de fermentaciones alcohólicas con jugos de filtro, en cuanto a su contenido de compuestos orgánicos minoritarios (etanol, glicerol, ácidos orgánicos, etc.) y su potencial como fuentes aportadoras de Carbono y energía para el crecimiento de Candida utilis en medios suplementados con varias fuentes nitrogenadas.

Indicador: García, R., Izquierdo, Y., Ribas, M., Tortoló, K., Ibáñez, M., León, O., Saura, M. y Saura, G. Effects of urea supplementation on Candida utilis biomass production from distillery waste. Waste and Biomass

Valorization (© Springer). (2014) Vol. 5 No. 1 pp. 119-124. DOI 10.1007/s12649-013-9209-z
Algunos resultados obtenidos durante el año 2014 se han dado a conocer dentro del Boletín de Azúcar y Derivados y Boletín de Novedades, circulados internamente en formato digital por el Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar.

Actividades de divulgación de algunos resultados en Unidades Presupuestadas de Base (UEB) de Derivados en el país como beneficiarios, bajo la forma de asesoría técnica.

6. tecelones aprendions

(Las lecciones aprendidas se refieren a aquellos aprendizajes, positivos y negativos, basados en la experiencia, relativos a formas de resolver problemas y/o maneras de llevar adelante actividades que puedan servir a otros actores en procesos similares. Las lecciones aprendidas del ITP podrán servir como insumo para las evaluaciones de proyecto así como para compartir con los demás proyectos que se implementan en conjunto con el Gobierno.)

Describir brevemente las lecciones aprendidas durante el año:

- Deben ser previstos los factores de riesgo que puedan obstaculizar el desempeño del Proyecto y disponer de estrategias alternativas de fácil alcance para los participantes comprometidos. Ej. Disponibilidad para destinar los recursos y facilidades por parte de las entidades participantes en caso de ocurrir atrasos en otorgamiento de fondos previstos y de esta forma no detener la ejecución de acciones.
- Debe establecerse una estrecha coordinación de las tareas comprometidas con el PNUD con la Entidad Nacional de Ejecución (ICIDCA)y organismos superiores al que se adscribe (Grupo Empresarial AZCUBA). Esto garantizara una correcta disponibilidad de recursos logísticos como transportación, dietas, etc., así como la redistribución de recursos ante situaciones de riesgo.
- Los resultados obtenidos deben ser divulgados de forma sistemática no solo con la comunidad científica a través de artículos técnicos en revistas especializadas, sino también a beneficiarios de los resultados (productores, empresas locales, etc.), para su correcta implementación.

7 Incas de trabato pana el misoramento del desenvegio

(Describir las estrategias, acciones y soluciones previstas para enfrentar los problemas identificados, utilizar las lecciones aprendidas, capitalizar los resultados obtenidos y optimizar las alianzas establecidas)

- Explorar y poner en acción estrategias alternativas para una ejecución exitosa dentro del cronograma establecido como medios de comunicación más versátiles y económicos, protocolos de investigación con equipamientos y material gastable de fácil adquisición.
- Información parcial del avance en la ejecución del Proyecto ante directivos de la Entidad Nacional Ejecutora y Organismo Superior (Grupo Empresarial AZCUBA).

Preparado por

Nombre: Ing. Gustavo Saura Laria

Cargo: Jefe de Proyecto

Organización: Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar (ICIDCA)

